Final Project Proposal
MUSI 231: Laptop Ensemble
Due: 11/17

The final project for this class is to create a software-based instrument, a
composition for laptop ensemble, or a more open-ended installation. Projects will
be presented during an open house at the Department of Music on December 15th
from 1 to 4PM.

Select one of the following three options for your final project:

Option A: Instrument

Create a software-based instrument that builds on Assignments 2 through 4
(audio synthesis, sampling, control data, and mapping). The project should
be significantly more involved than the work on the assignments, for
example, implementing a more sophisticated synthesis technique, or more
nuanced physical control and mapping strategy. Your instrument should also
have a clear and intuitive graphical user interface that contains information
on how to play. Prepare a 2 to 3 minute performance with the instrument for
the final presentation.

Option B: Piece

Create a scored composition for 4 to 8 performers that uses simple software-
based instruments and network communication. The instrument can be
based on patches and software from existing L0rk pieces, examples and
assignment from class, or simple patches of your own design. You may
choose to structure your composition using network communication and
OSC data, building on the work you did in Assignment 4. You may also
incorporate traditional music notation or graphical elements. The piece
should be 3 to 6 minutes long, and have a clear and recognizable structure.

Option C: Installation/Performance

This option allows you to create a more open-ended performance that
incorporates aspects of digital instrument building, interactivity, multi-
channel sound, and networked communication. The software does not have
to be directly controlled by a performer as in the first two options, but can
instead be driven by an algorithmic process, an analysis of existing data, or
user participation (via an iphone app, camera tracking, audio analysis, etc).
For each option, you may choose to work in groups of up to 3 students. Projects that involve collaboration must demonstrate a commensurate level of complexity and/or functionality: For example, an Option A instrument that requires simultaneous controller data from multiple performers, or an Option B piece that incorporates more than one type of instrument, such as CMMV. Students in collaborative groups will be graded separately based on their individual contributions to the project, which will be described in a supplemental written document.

Grading criteria:

Programming:

While you are not required to have written the patch/software entirely from scratch, you must clearly demonstrate how your project builds upon, re-contextualizes, or otherwise adds to the technological tools you have chosen to work with. You will be required to write a brief explanation of how the program works, for example describing the types of input data, how audio is synthesized, the various ways that the two are mapped together, and any use of network communication.

You may build on – or hack apart – any of the patches or programming we have examined in class, including homework assignments, lecture demos, or pieces we have performed. Andrew and I also will be available to help with the Max programming.

Content:

The evaluation of content will vary depending on the type of project. For example, an instrument that relies on sound-file manipulation will be assessed on the audio material that has been collected and curated. A multi-player LOrk piece will be evaluated on the clarity and effectiveness of the score/instructions/game as well as any extra-musical components of the piece (choreographed movements, visuals, etc).

While you are encouraged to incorporate improvisation and chance operations, their use must be deliberate and each project must have a clearly defined structure.

Final Performance:

The performance will be evaluated as part of the final grade. Contributing factors include how smoothly the technology works (the piece/instrument/installation should require minimal ‘tinkering’ to get it up and running), as well more traditional performance-based evaluation. Use loadbang, loadmess, and presets to configure the patch, and make sure you have tested everything BEFORE the final performance!
Proposal: DUE 11/17

Write up a paragraph describing your proposed project. Include the following information:

- Which option you plan to choose.
- Number of performers.
- If you are planning to work in a group.
- Hardware you will need (controllers, speakers, etc).
- Existing patches/software you plan to use.
- Description of the project, including any content you will use (audio recordings, images, MIDI, other types of data).
- How the project will be structured over time (i.e., fixed score, graphic notation, game piece, conductor/ensemble, installation, etc).

Upload your written proposal and any corresponding material (patches, audio/video media, links to websites, etc) that help illustrate your project to the classesV2 dropbox by lecture on 11/17.